
15

Deep Learning Training Complexity Dropping
by Neural Network Pre-Training Method

Shivnath Ghosh, Santanu Koley

Abstract

Our recent research history says deep multilayer architectures might be efficient
and successful to represent and trained the several algorithms. Theoretically it
seems, training of neural network architecture is an easy task but the experiments’
result analysis says it is difficult to train the deep learning architecture because
the behavior learning layers depends on training data. Here, our objective is to
answer the question why training of deep architecture is difficult and find out
the standard gradient descent formula. Through the experiment it would be
confirmed that unsupervised pre-training increase the learning rate and
demonstrate the strength of learning procedure with respect to arbitrary
initialization. This paper shows the role of pre training in terms regularization
and optimization for deep learning architecture.

Keywords: Deep learning; Multilayer feed forward; Supervised pre-training;
Learning rate.

Introduction

Deep learning methods intend to learn attributes hierarchies from different
lower levels to higher levels architectures. With the help of composition of
lower level features deep architecture learns. They include learning methods,
multilevel abstractions for function mapping the input to output directly from
data, automatically. For the higher level of abstraction such automatic learning
has an important role. Because deep learning method is based on behavior of
sensory to associatory and internal representation of associatory units, they put
forwards capacity to naturally influence, unsupervised data and data from similar
task to improve challenging problems [1]. Conceptual mathematical driving
force for deep learning architecture comes from complexity theory
[2].Theoretical result analysis suggest that complicated function with respect to
deep architecture can be represented by higher level of abstraction [3].

Taking into account most recent experimental results a Restricted Boltzmann
Machine (RBM) based on unsupervised learning provides better result to training
deep architecture [4]. Unsupervised generative architecture supports for each
layer of deep learning, classification task, machine learning dimensional
reduction task, aggregation and regression [5], [6], [7]. Here our main concern

ISSN 2320-4907 IISUniv.J.Com.Mgt. Vol.6(1), 15-21 (2017)

16

IISUniv.J.Com.Mgt. Vol.6(1), 15-21 (2017)

finding out the difficulties with the training of deep learning architecture and
come up with a solution through pre training unsupervised method.

It can be summarized the training algorithm by including some useful research
results such as deep neural and multitasking [8], unsupervised learning of
distribution [9], advanced neural information [10], advanced neural processing
system [11]. In our experiment output vector is h(x) = sigmoid (b + Wx) for
general neural network, where x is in the form of stochastic noise, b stand for
bias, W weight matrix and hidden layer sigmoid =1/ (1+ exp (-a)). If stochastic

�corruption Ci (x) = xi for fixed size random subset and for noisy input x =
sigmoid (c + WT h (C (x))) [12].

Experimental Setting And Datasets

Experimental setting and datasets may be discussed into two different types as
Finite Dataset Reference and Experimental Setting requirement for training.

A. Finite Dataset Reference:

The Mixed National Institute of Standards & Technology (MNIST) database has a
training set of 60,000 examples, and a test set of 10,000 examples. This is a subset
of National Institute of Standards and Technology (NIST). The digits have
properties that are centered in a fixed-size image. A very good dataset for
researchers, learners who wants real world data for experiment, with putting
fewer efforts on pre-processing.

There are four files available: http://www. http://yann.lecun.com/exdb/mnist/

I. Training set image (9912422 bytes)

II. Training set levels (28881 bytes)

III. Test set image (1648877)

IV. Test set labels (4542 bytes).

B. Experimental Setting requirement for training:

This experiment includes the feed forward multilayer neural network (deep
architecture) training with pre- training data and without pre-training (may
have variable number of layers).Without pre training requirements- Number of
layers, learning rate(0.002, 0.005, 0.007), cost updation (0,10-4, 10-6, 10-8), number
of hidden units (300,750,1150). For the pre training process that includes all
above plus pre training and pre training pre training rate (0.001, 0.01, 0.35, and
0.4).

Deep Learning Expected Effort and Experiment

A deep architecture, which is composition of several layers with random ordinary
initial charge, will provide certain result and with pre training process it will
behave in some better consequence. It is already clear that without pre training
more than 5-layers training process leads the error due to error propagation. So,

17

Ghosh and Koley 2017

increasing the number of layers without pre-training directly proportional to
mounting the chance of decision toward local maxima. Fig 1 and 2 with 400
initial (experiment on MNIST data set) show the error propagation. Effect of
depth performance suggest that pre-training is vital for random ordinary inputs.
It is been noted for deep learning hidden layers are expected to be more than to
5 layers for better results. The results prove that pre-trained weights perform
like supervised learning and easy to optimization, minimize error propagation.
For better understanding it can be relate to supervised learning with optimized
objective or similar to gradient based optimization. It may possible that training
error in initial states is negligible but accumulative error is not ignorable in
without pre-training deep learning.

Figure 1: 400 random ordinary inputs with 5-layer without pre-training and
with training consequences.

Figure 2. Trained and without pre training histogram representation, error
obtained MNIST data set.

Pre-training process has a similar effect such as good “prior” knowledge,
parameters or regularize. For pre-trained models:

18

For without pre-training:

The effect of pre-training and without pertaining can be analysing by fig3. Where
behaviour of pre-training is found uniform regularized.

Figure 3. Behaviour of different layers in deep learning with pre-training and
without pre-training, data set from MNIST.

Pre-tranning Effect Analysis Number Analysis and Unit per Layers

Here we want to explore the performance change effect cause of number of
layers and units. More number of layers provides better regularities and less
number of layers need additional bias with pre-training set. Deep learning
architecture keeps consistent performance and act like as a regularizes. So it
performs well in classification. Fig-4 suggests more hidden layer provides better
consistency. It is observed that pre-training helps for laser layers and deeper
network and small network has limited capacity to generalize and classification [13].

Figure 4. Experiments on MNIST, Effect of layer size, Pre-training and
without pre-training error effect with 1, 2 hidden layers.

IISUniv.J.Com.Mgt. Vol.6(1), 15-21 (2017)

19

Effect of Initialization Stratrgies

After the decision the number of hidden layers and processing nodes next
question is in which layer the pre-training data should be applied and/ or
combination of layers. Fig-5 an analysis and result about the training data applied.

Figure 5. Role & importance initialization techniques, test error obtained,
effect with pre-train the lower layers.

Distribution of weight and initialization impact: Random initialization without
pre-training has more error or deviation as compare to pre-training with first or
second or both layer initializations.

Calculation Difficulties of Pre-training on Different Layers

An experiment setup in hybrid initialization value added to pre-trained weight
application to different layers. If we compare pre-training to first layer, skip
first layer pre-training to second layer, without pre-training results, we observed
pre-training of first layer will provide better result than two others options. Pre-
training to second layer skipping second layer directly may provide worst result
than without pre-training [14]. So, pre-training must take place in lower layer
but difficulties are, if we consider deep back propagation neural network where
lower layers associated less informative and consequently ineffective results.
Whereas second layer or upper layer more close to output layer more informative
but may be with inherited error or with ineffective consequences.

Pre-training earlier layers must be used for better & effective output instead of
training of supervised layers.

Discussion & Conclusion

Accepting and getting better deep architectures remains an open problem. Our
confidence is that formulating and adopting approach for learning in deep
architectures which requires a more reflective understanding of the situation.

Ghosh and Koley 2017

20

It has been shown that pre-training put in robustness to a deep architecture. The
same result can be performed by without pre-training but require more deep
architecture and processing with respect to error finding, but may increase local
maxima problem and that is increases optimization problem. For better
generalization consistency is expected.

Fig. 6. Calculation over MNIST data for Pre-training and without pre-training
behaviour with different colour dots.

We can see fig-6 which tells pre-training and unsupervised explanation with
blue and yellow colour dotes. (MNIST, 50-50 network for each pre-trading and
without pre-training).

Through this two experiment it can be seen that pre-training can reduce required
training data set which behave like regularization with sufficient number of
hidden layer (for systematic approach and training and adaptation requires
sufficiently large number of layers.) In addition result says that pre-training has
a better impact or result in higher order layers than lower order layers. Whereas
in without pre-training higher order layer are with more error propagated.

Simply, pre-training has consistency, regularity, good initial marginal
distribution and of course able to capture more dependencies.

References

1. Zhu, Chen & Yuille, (2009) “Unsupervised learning of probabilistic grammar-
markov models” IEEE Transactions on Pattern Analysis and machine
intelligence, pp.114-128.

2. Bengio, (2009) “Learning deep architectures for AI”, IEEE transaction, pp.
11-17.

3. Weston, Ratle, (2008)”Deep learning via semi-supervised embedding”,
ICML, New York, pp. 1168-1175.

IISUniv.J.Com.Mgt. Vol.6(1), 15-21 (2017)

21

4. D. Haussler, (1994)”Unsupervised learning of distributions on binary vectors
using two layer networks” Technical Report UCSC-CRL-94-25, University
of California, Santa Cruz.

5. E. Hinton, S. Osindero, (2006) “A fast learning algorithm for deep belief
nets”, Neural Computation, pp. 1527–1554.

6. Collobert and J.Westo, (2008)”A unified architecture for natural language
processing: Deep neural networks with multitask learning” ICML.

7. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. (2007) “An
empirical evaluation of deep architectures on problems with many factors
of variation”,Twenty-fourth International Conference on Machine Learning,
Omnipress, pp. 473–480.

8. G. E. Hinton, (2008)” Using deep belief nets to learn covariance kernels for
Gaussian processes”, MIT Press, Cambridge, MA.

9. Mnih& Hinton, (2009) “A scalable hierarchical distributed language model”
NIPS 21, pp. 1081–1088.

10. Lee, Ekanadham, (2008) “Sparse deep belief net model for visual area”, MIT
Press, Cambridge.

11. S. Chopra, and Y. LeCun (2007)” Efficient learning of sparse representations
with an energy-based model”, MIT Press.

12. Larochelle, Y. Bengio, (2008) “Extracting and composing robust features
with denoising autoencoders”, Twenty-fifth International Conference on
Machine Learning, pp. 1096–1103.

13. Erhan,Manzagol, (2009) “The difficulty of training deep architectures and
theeffect of unsupervised pre-training” AISTATS,pp. 153–160.

14. Bengio,Simard& Frasconi, (1994) “Learning long-term dependencies with
gradient descent is difficult” IEEE Transactions on Neural Networks, 5, pp.
157–166.

Ghosh and Koley 2017

